

STREAM [MEDICAL]

[SAMPLE PAPER]

FOR CLASS

11th GOING TO 12th

TIME: 2 Hours

FULL MARKS: 480

INSTRUCTIONS

[A] General

- 1. This Question paper contains FOUR Parts, A, B, C & D (Physics, Chemistry, Botany & Zoology).
- 2. This Question Paper contains 11 pages including cover page.
- 3. This question paper contains total 120 questions (Each subject have 30 single correct answer type questions.)
- 4. The Question Paper has blank spaces at the bottom of each page for rough work. No additional sheets will be provided for rough work.
- 5. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.
- 6. The OMR (Optical Mark Recognition) sheet shall be provided separately.

[B] Answering on the OMR

- 7. In all the parts, each qu<mark>estion will have 4 c</mark>hoices out of which only one choice is correct.
- 8. Darken the bubble with Ball Pen (Blue or Black) ONLY.

[C] Filling OMR

- 9. On the OMR sheet, fill all the details properly and completely, otherwise your OMR will not be checked.
- 10. Do not write anything or tamper the barcode in the registration no. box.

[D] Marking Scheme:

Space for Rough Work

11. For each question you will be awarded 4 marks if you darken the bubble corresponding to the correct answer ONLY and zero (0) marks if no bubble is darkened. In all other cases, minus one (–1) mark will be awarded.

Name :	 						
				1 [
Registration No.:			Ш				

SECTION – A: PHYSICS

1.	Light year is a uni	t of		
	(A) Time	(B) Mass	(C) Distance	(D) Energy
2.	If L and R are res	spectively the induc	t <mark>ance</mark> and resistance,	then the dimensions of $\frac{L}{R}$
	will be			
	(A) $M^0L^0T^{-1}$			
	(B) M ⁰ LT ⁰			
	(C) M^0L^0T			
	(D) Cannot be rep	res <mark>ented in ter</mark> ms o	f M, L and T	
3.		u <mark>la for lat</mark> ent heat is		
	(A) $M^0L^2T^{-2}$	(B) MLT ⁻²	(C) ML ² T ⁻²	(D) ML^2T^{-1}
4.		<mark>f uni</mark> versal gravitatio		
	(A) $M^{-2}L^2T^{-2}$	(B) $M^{-1}L^3T^{-2}$	` '	(D) ML ² T ⁻²
5.				spring of spring constant K
	value of <i>x</i> and <i>y</i> a		Cm K'; where C is a C	<mark>dime</mark> nsionless quantity. The
	_		1 1 1	1 1
	(A) $x = \frac{1}{2}, y = \frac{1}{2}$	(B) $x = -\frac{1}{2}, y = -\frac{1}{2}$	$\frac{1}{2}$ (C) $x = \frac{1}{2}, y = -\frac{1}{2}$	(D) $x = -\frac{1}{2}, y = \frac{1}{2}$
6.	The quantities A	and B are related	by the relation, $m =$	A/B, where <i>m</i> is the linear
	density and A is th	ne force <mark>. The</mark> dim <mark>en</mark>	sions of <i>B</i> are of	
	(A) Pressure		(B) Work	
	(C) Latent heat		(D) None of these	
7.	•	•	·	avelength λ , the density of
	=		gravity g. The method	od of dimensions gives the
		hese quantities as	(C) $v^2 \propto g\lambda$	(D) v2 - m-11 -3
	(A) $v^2 \propto \lambda g^{-1} \rho^{-1}$, ,	
8.	The equation of v	wave is given by Y	$' = A \sin \omega \left(\frac{x}{v} - k \right)$ wher	re ω is the angular velocity
	and <i>v</i> is the linear	velocity. The dimer	sion of k is	
	(A) LT	(B) T	(C) T ⁻¹	(D) T ²

Space for Rough Work

(C) L^2MT^{-3}

(D) LMT⁻²

(A) L^2MT^{-2}

9.

Dimensional formula for torque is

(B) $L^{-1}MT^{-2}$

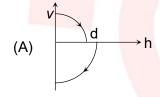
10. A cube has numerically equal volume and surface area. The volume of such a cube is (A) 216 units (B) 1000 units (C) 2000 units (D) 3000 units 11. A lift is going up. The variation in the speed of the lift is as given in the graph. What is the height to which the lift takes the passengers /elocity (m/sec.) 3.6 (A) 3.6 m(B) 28.8 m (C) 36.0 m(D) Cannot be calculated from the above graph 12. A car can be stopped over a distance x when its momentum is p, what will be the stopping distance when the momentum is 2p (A) x(B) 2x (C) 4x (D) 8x The distance time graph of a particle at time t makes angle 45° with the time axis. After 13. one second, it makes angle 60° with the time axis. What is the acceleration of the particle (B) $\sqrt{3} + 1$ (A) $\sqrt{3} - 1$ (C) $\sqrt{3}$ (D) 1 A car accelerates from rest at 5 ms⁻² and then retards to rest at 3 ms⁻². The maximum 14. velocity of the car is 30 ms⁻¹, what is the distance covered by the car (A) 150 m (B) 240 m (C) 300 m A ball thrown upwards, returns to the thrower after 4 seconds. Given that $g = 10 \text{ ms}^{-2}$, 15. with what velocity does it return to the thrower (A) $10 \, \text{ms}^{-1}$ (B) $10\sqrt{2} \,\mathrm{ms}^{-1}$ (D) $20\sqrt{2} \text{ ms}^{-1}$ (C) 20 ms⁻¹ 16. The velocity time graph of a body moving in a straight line is shown in figure. Displacement traveled by the body in 8 sec be (A) 18 m (B) 16 m 4\5 (D) 6 m(C) 8 mt(sec) 17. A ball dropped from a height h reaches the ground in time T. What is its height at time

Space for Rough Work

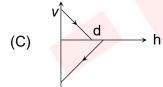
(C) h/2

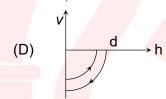
(D) 3h/4

(B) h/4


(A) h/8

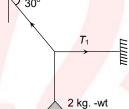
- 18. The displacement time graph for the two particles A and B are straight lines inclined at angle of 30° and 60° with the time-axis. The ratio of the velocities $V_A : V_B$ will be
 - (A) 1:2
- (B) 1:√3
- (C) $\sqrt{3}:1$
- (D) 1:3
- 19. If a particle has zero displacement. What is true about its distance
 - (A) It will be zero


(B) It cannot be zero


(C) It will be negative

- (D) It may or may not be zero
- A body starts from rest and moves with a uniform acceleration. The ratio of the 20. distance covered in the nth sec to the distance covered in n sec is
 - (A) $\frac{1}{n} \frac{2}{n^2}$
- (B) $\frac{1}{n} \frac{2}{n^2}$ (C) $\frac{2}{n} \frac{1}{n^2}$
- 21. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as

(B)



- 22. A train is moving with velocity 20 m/s, on this dust is falling at the rate of 50 kg/minute. The extra force required to move this train with constant velocity will be
 - (A) 16.66 N
- (B) 1000 N
- (C) 166.6 N
- (D) 1200 N
- Three weights W, 2W and 3W, are connected to identical springs suspended from 23. rigid horizontal rod. The assembly of the rod and the weights fall freely. The positions of the weights from the rod are such that
 - (A) 3 W will be farthest

- (B) W will be farthest
- (C) All will be at the same distance
- (D) 2W will be farthest
- 24. A 30 g bullet initially travelling at 120 m/s penetrates 12 cm into a wooden block. The average resistance exerted by the wooden block is
 - (A) 2850 N
- (B) 2200 N
- (C) 2000 N
- (D) 1800 N

- 25. A man measures time period of a pendulum (T) in stationary lift. If the lift moves upward with acceleration $\frac{9}{4}$, then new time period will be
 - (A) $\frac{2T}{\sqrt{5}}$
- (B) $\frac{\sqrt{5}T}{2}$ (C) $\frac{\sqrt{5}}{2T}$
- (D) $\frac{2}{\sqrt{5}T}$
- 26. A boy whose mass is 50 kg stands on a spring balance inside a lift. The lift starts to ascent with an acceleration of 2ms⁻². The reading of the machine or balance $(q = 10 \,\text{ms}^{-2}) \,\text{is}$
 - (A) 50 kg
- (B) Zero
- (C) 49 kg
- (D) 60 kg
- 27. A ball of mass 0.5 kg moving with a velocity of 2ms⁻¹ strikes a wall normally and bounces back with the same speed. If the time of contact between the ball and wall is 10⁻³ s, the average force exerted by the wall on the ball is
 - (A) 1123 N
- (B) 1000 N
- (C) 500 N
- (D) 2000 N
- A body of weight 2 kg is suspended as shown in the figure. The tension T₁ in the 28. horizontal string (in kg wt) is
 - (A) $2/\sqrt{3}$
 - (B) $\sqrt{3}/2$
 - (C) $2\sqrt{3}$
 - (D) None of these

- If a unit vector is represented by $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$, then the value of 'c' is
- (A) 1

29.

- (B) $\sqrt{0.11}$
- (C) $\sqrt{0.01}$
- (D) $\sqrt{0.39}$
- The component of vector $A = 2\hat{i} + 3\hat{j}$ along the vector $\hat{i} + \hat{j}$ is 30.
 - (A) $\frac{5}{\sqrt{2}}$
- (B) $10\sqrt{2}$
- (C) $5\sqrt{2}$
- (D) 5

SECTION – B : CHEMISTRY

31.	A certain sample dioxide produced				. What	is the weight	of sulphur
	(A) 2×10 ⁴ kg	(B) 4×10⁴ kg		(C) 4×10⁵ kg		(D) 2×10 ⁵ kg	
32.	The equation 2A	$d(s) + \frac{3}{2}O_2(g) \to A$	Al ₂ O ₃ (s)	shows that			
	(A) 2 moles of Al	react with 3/2 m	ole of O	produce 7/2 m	ole of	Al ₂ O ₃	
	(B) 2g of Al react	t with 3/2 litre of 0	O ₂ to pro	<mark>duce 1 m</mark> ole of	Al ₂ O ₃		
	(C) 2g mole of Al	l react with 3/2 lit	re of O ₂	to produce 1 m	ole of	Al_2O_3	
	(D) 2 moles of Al	rea <mark>ct with 3/2</mark> m	ole of O	₂ to produce 1 n	nole of	$^{T}Al_{2}O_{3}$	
33.	10g of carbon bu	urns giving 11.2	litres of	CO ₂ at NTP. At	fter co	mbustion, the	amount of
	(A) 2.5g	(B) 4g		(C) 3g		(D) 1g	
34.	In a sample of atoms. The empi	-			0.132	mole and C	=2.65 1022
	(A) Na ₂ CO ₃			(B) Na ₃ O ₂			
	(C) Na _{0.088} 7O _{0.132} C	22 2.65×10		(D) NaCO			
35.	If an iodised salt iodide ions going			•	_		y day, the
	(A) 7.2×10 ²¹	(B) 7.2×10 ¹⁹		(C) 3.6×10^{21}		(D) 9.03×10 ¹⁹	
36.	Angular moments (A) $2h/\pi$	um of th <mark>e elect</mark> ro (Β) h / π	n preser	In the M-shell (C) $3h/2\pi$	l of hyd	droge <mark>n at</mark> om is (D) h / 4π	3
37.	In Bohr's model energy will be en			electron jumps	from	n=1 to n=3, l	now much
	(A) 2.15×10 ⁻¹¹ erg	~		(B) 0.1911×10	•	S	
	(C) 2.389×10 ⁻¹² e	•		(D) 0.239×10-	•		
38.	The maximum negative quantum number	r value I = 4 is	ns with		2 in the		azimuthal
	(A) 3	(B) 5		(C) 7		(D) 9	
39.	The minimum an 1, 0, +1 is	igular momentu <mark>n</mark>	n of an e	electron with the	e mag	netic quantum	number –
	(A) $\sqrt{3}/2 h/\pi$	(B) h/π		(C) 2h/π		(D) $\frac{3}{2}\frac{h}{\pi}$	

-				
40.	If n + I value of a	an orbital is 5, its shap	e may be	
	(A) Spherical		(B) Dumb-bell	
	(C) Double dum		(D) Any one of the	
41.	If air contains N ₂	and O ₂ in volume ration	o 4: 1 the average var	oour density of air is
	(A) 18.5	(B) 16.5	(C) 14.4	(D) 29.0
42.	The excluded vo	olume of a gas will be I	$\frac{T_c}{P_c}$ is:	
	(A) Small	(B) Large	(C) Equal to 1	(D) Less than unity
43.		f a gas contained in a temperature must be	closed vessel is incre	ased by 0.4% when heated
	(A) 250 K	(B) 250°C	(C) 2500 K	(D) 25°C
44.	•			ne atmospheric pressure.
	(A) 0.9	(B) 1.11	(C) 0.11	(D) 2.11
45.		CO ₂ is maximum at		
	(A) STP	(B) 0°C, 2 atm	(C) 127°C, 1 atm	(D) 273°C, 2 atm
46.	Which electronic	configuration mu <mark>st re</mark>	<mark>present a</mark> n atom in <mark>an</mark>	excited state ?
	(A) 1s ² ,2s ² 2p ¹	(B) 1s ² ,2s ² 2p ²	(C) 1s ² ,2s ² 2p ² ,3p ¹	(D) 1s ² ,2s ² 2p ⁵
47.	The correct orde	er o <mark>f incre</mark> asing radi <mark>us</mark>	of the elements Si, AI,	Na and P is :
	(A) Si < Al < P <	Na (B) P < Si < Al < N	Na (C) Al < Si < P < I	Na <mark>(D) Al < P < Si < Na</mark>
48.	The ra <mark>dius of w</mark> h	nich ion <mark>is clos</mark> est to t <mark>h</mark>	at of Li⁺ ion ?	
	(A) Na⁺	(B) Be ²⁺	(C) Mg ²⁺	(D) Al ³⁺
49.	The order of io gaseous state) is	-	ween He⁺ ion and H-	atom (both species are ir
	(A) I.P. (He+)=I.F	P.(H)	(B) I.P. (He⁺) <i.p.< td=""><td>(H)</td></i.p.<>	(H)
	(C) I.P. (He+)>I.F	P.(H)	(D) Cannot be co	mpared
50.	Among the follow	wing elements <mark>, the hig</mark>	<mark>hest ioniza</mark> tion energy	is:
	(A) [Ne]3s ² 3p ¹	(B) [Ne]3s ² 3p ³	(C) [Ne]3s ² 3p ²	(D) [Ar]3d ¹⁰ 4s ² 4p ³
51.	The amount of eatom is called:	energy released on the	<mark>e additio</mark> n of an electr	on in outermost shell of ar
	(A) Ionization en	thalpy	(B) Hydration enth	nalpy
	(C) Electronegat	ivity	(D) Electron gain	enthalpy

52.	In which of the follo	wing atom, the attach	ement of electon is m	ost difficult?
	(A) Radon	(B) Nitrogen	(C) Oxygen	(D) Radium
53.	Which of the follow	ing represents correct	order of electron affir	ity?
	(A) CI > F > S > O	(B) F > O > S > CI	(C) F > CI > S > O	(D) CI > S > O > F
54.	The process require	ing absorption of e <mark>ner</mark>	<mark>gy</mark> is :	
	$(A) N \rightarrow N^{-}$	(B) $F \rightarrow F^-$	(C) CI → CI ⁻	(D) $H \rightarrow H^-$
55.	Correct expression	of "Alred and Rochow	r's" scale is :	
	(A) Electronegativit	$y = 0.744 \frac{Z_{eff}}{r^2} + 0.359$	(B) Electronegativity	$r = 0.359 \frac{r^2}{Z_{eff}} + 0.744$
	(C) Electronegativit	$\frac{Z_{\text{eff}}}{r} + 0.744$	(D) Electronegativity	$r = 0.359 \frac{Z_{eff}}{r^2} + 0.744$
56.	Amongst sodium habecause of :	<mark>alid</mark> es (NaF, NaCl <mark>, N</mark> a	Br and Nal), NaF <mark>has</mark>	the h <mark>ighest me</mark> lting point
	(A) High oxidisin <mark>g p</mark>	oower	(B) Lowest polarity	
	(C) Maximum lattic	e energy	(D) Minimum ionic c	haracter
57.	The hydration ener	gy of Mg²+ ions is less	er than that of :	
	(A) Al ³⁺	(B) Ba ²⁺	(C) Na⁺	(D) None of these
58.	Amon <mark>g the followin</mark>	g, wh <mark>ich ha</mark> s the <mark>maxi</mark>	<mark>mu</mark> m hyd <mark>ration</mark> energ	y ?
	(A) OH-	(B) NH ₄ ⁺	(C) F-	(D) H ⁺
59.	Select the amphote	eric subs <mark>tance</mark> in the fo	ollowing :	
	(A) SO ₃	(B) Na <mark>OH</mark>	(C) CO ₂	(D) AI(OH) ₃
60.	Which of the follow	ing com <mark>pound is most</mark>	acidic?	
	(A) Cl ₂ O ₇	(B) P ₄ O ₁₀	(C) SO ₃	(D) B_2O_3

SECTION – C : BOTANY

61.	In unicellular organisms, with respect to g	growth and reproduction following can be true.
	(1) Growth and Reproduction are inclus	ve events
	(2) Unicellular organisms grow by cell d	v <mark>i</mark> sion
	(3) Both are exclusive	
	(A) Only 1 correct	(B) Only 2 correct
	(C) Both 1 and 2 correct	(D) Only 3 correct
62.	In majority of higher animals and plants events.	and are mutually exclusive
	(A) growth; nutrition	(B) nutrition; consciousness
	(C) growth; reproduction	(D) reprodu <mark>ction; consciousness</mark>
63.	Non-living objects-	
	(1) Grows from external surface by colle	<mark>ecting</mark> substance o <mark>n it.</mark>
	(2) Grows from internal surface like livin	g
	(3) Do not grow at all	
	Which of the following option is correct?	
	(A) Only 1 correct	(B) Only 2 correct
	(C) Only 3 correct	(D) All 1, 2, 3 correct
64.	In multicellular organisms, refer features more or less similar to those of p	rs to the production of progeny possessing parents.
	(A) growth (B) reproduction	(C) metabolism (D) consciousness
65.	Which of following helps bamboo and gra	sses to elongate?
	(A) Apical meristems	(B) Lateral meristems
	(C) Secondary meristem	(D) all meristem
66.	Cells of permanent tissues are specialize	d
	(A) functionally	(B) only structurally
	(C) both structurally and functionally	(D) for mitosis

67.	The apical meri	stem of the root	is present					
	(A) in all the ro	ots		(B)	only in ra	dicals	3	
	(C) only in tap	roots		(D)	only in ac	dventi	tious roots	
68.	During the form shoot apical me		_	tion o	f stem, so	me ce	ells 'left behind' from	the
	(A) lateral meri	stem		(B)	intercalar	y mer	<mark>rist</mark> em	
	(C) cork cambi	<mark>um</mark>		(D)	fascicula	r cam	<mark>biu</mark> m	
69.	Which of the fo axillary bud?	ollowing is respo	onsible for	the fo	ormation o	of an	embryonic shoot ca	lled
	(A) Lateral me	ristem		(B)	Apical mo	erister	m	
	(C) Intercalary	meristem		(D)	Both (B)	and (0	C)	
70.	Which of the formary roots?	ol <mark>lowing</mark> plant p	oarts elong	ates	directly ar	nd lea	ads to the formation	า of
	(A) bud	(B) radio	ele	(C)	plumule		(D) root hair	
71.	The primary roc	ot <mark>s and</mark> its branc	he <mark>s con</mark> stit	ute th	e			
	(A) fibrous root	t s <mark>ystem</mark>		(B)	tap root s	systen	n	
	(C) adventitiou	s ro <mark>ot syste</mark> m		(D)	all of the	above	9	
72.	Fibrous root sys	stem is f <mark>ound</mark> in						
	(A) monocotyle	edonous <mark>plants</mark>		(B)	<mark>dicotyle</mark> d	onous	s pl <mark>ants</mark>	
	(C) bryophytes			(D)	gymnosp	erms		
73.	Roots develop f	rom parts o <mark>f the</mark>	plant other	r than	radicle ar	e calle	ed	
	(A) tap roots			(B)	fibrous ro	ots sy	ystem	
	(C) adventitiou	s roots		(D)	nodular r	oots		
74.	Root hairs deve	lop from						
	(A) region of m	aturation		(B)	region of	elong	ation	
	(C) region of m	eristematic activ	/ity	(D)	root cap			
75.	The part of the	root which is mo	st active in	wate	r absorptio	n is c	alled	
	(A) root cap			(B)	maturatio	n zon	ie	
	(C) meristemat	ic zone		(D)	zone of e	longa	tion	

76.	Fibrous roots deve	elop in m	aize from					
	(A) upper nodes	(B)	lower node	es	(C)	upper internoc	les (D)	none of these
77.	Prop roots of bany	an tree	are meant t	for				
	(A) respiration				(B)	absorption of v	water fr	om soil
	(C) providing sup	port to b	ig tree		(D)	all of the abov	е	
78.	Stilt roots occur in							
	(A) groundnut	(B)	rice		(C)	sugarcane	(D)	more than one
79.	Membranous exte	nsions ir	blue gree	n algae	e are	known as		
	(A) phytochrome	(B)	chromatop	hore	(C)	mesosomc	(D)	pncumatophore
80.	Extension of plasn	na meml	orane in pro	okaryot	tic ce	ell is		
	(A) mesosome	(B)	haploid		(C)	ribosomes	(D)	none of these
81.	Po <mark>lysome is</mark> a ch <mark>a</mark>	in of						
	(A) oxysomes	(B)	sphaeroso	mes	(C)	ribosome <mark>s</mark>	(D)	dictyosomes
82.	Integral proteins o	<mark>f cell</mark> me	mbrane <mark>oc</mark>	cur on/	'in			
	(A) inner surfaces	3			(B)	outer surfaces		
	(C) phospholipid	matrix			(D)	inner and oute	r surfa	ces
83.	Active transport ac	cross bio	<mark>m</mark> embrane	involve	es			
	(A) production of	ATP			(B)	r <mark>equire</mark> ment of	f energ	y
	(C) production of	toxin			(D)	release of ene	rgy	
84.	The membrane of	the eryth	nrocytes ha	as appr	oxim	nately		
	% of proteins and	% lip	oids.					
	(A) 42, 50	(B)	52, 40		(C)	50, 50	(D)	60, 40
85.	The lipid compone	nt of the	me <mark>mbrane</mark>	e mainl	у со	nsists of.		
	(A) Polysaccharic	les			(B)	Phosphoglyce	ride	
	(C) Inonosacchar	aides			(D)	Both (A) and (C)	
86.	Golgi apparatus is	concern	ned with					
	(A) excretion	(B) s	secretion		(C)	ATP synthesis	(D)	RNA synthesis


Which of the following phase is called the resting phase during which cell is preparing 87. for division by undergoing both cell growth and replication of DNA? (B) Prophase (C) G_o phase (A) M - phase (D) Interphase 88. Which of the following phase follows S and G phases of interphase? (A) Prophase (B) Metaphase (C) Anaphase (D) Telophase 89. In mitosis, nucleolus and nuclear membrane completely disappear at (A) interphase (B) prophase (C) metaphase (D) telophase 90. What is the stage of mitosis in which chromosomes are arranged on the equator of spindle? (A) Anaphase (B) Prophase (C) Metaphase (D) Telophase

SECTION – C : ZOOLOGY

91.	The acidic, basic and	I neutral amino acids a	are:	
	(A) Glutamic acid, va	line & lysine	(B) Aspartic acid, ly	ysine & glutamate
	(C) Glutamic acid, lys	sine & valine	(D) Tryptophan, leu	ucine & lysine
92.	Licithin is :			
	(A) Carbohydrates	(B) Protein	(C) Fat	(D) Phospho lipid
93.	Exoskeleton of Arthro	opodes (insects) are m	nade up of:	
	(A) Glucosamine	(B) Chitin	(C) Mucosaccharid	e(D) Chondrinsulphate
94.	Haemoglobin is :			
	(A) Primary protein		(B) Secondary prot	ein
	(C) Tertiary protein		(D) Quaternary pro	tein
95.	Which of the followin	g is not macr <mark>omole</mark> cul	е	
	(A) Mucopolysac <mark>cha</mark> i	ride	(B) Triglyceride	
	(C) Haemoglobin		(D) Cellulose	
96.	Which poly <mark>sacc</mark> harid	e <mark>hold l</mark> ₂ in its h <mark>elical s</mark>	<mark>str</mark> ucture a <mark>nd give</mark> blu	i <mark>e colour</mark>
	(A) Ce <mark>llulose</mark>	(B) Starch	(C) C <mark>ellobio</mark> se	(D) All of these
97.	The complex polysac	cchari <mark>de is</mark>		
	(A) Cellulose	(B) Chitin	(C) Starch	(D) Inulin
98.	Which mucopolysaco	charide <mark>obtain from rec</mark>	d algae?	
	(A) Heparin	(B) Caragennin	(C) Algenic acid	(D) Agar-agar
99.	The α -helical structure	re of prote <mark>in is maintai</mark>	ned by	
	(A) hydrogen bond	(B) covalent bonds	(C) ionic bonds	(D) hydrophobic bond
100.	Different kinds of am	ino acid ma <mark>inly depen</mark>	<mark>d up</mark> on	
	(A) side chain/alkyl g	roup	(B) amino group &	acid group
	(C) α-carbon & H		(D) amide group &	alkyl group

101. Animals belonging to phylum Chordata are fundamentally characterised by the presence of structure noted as A, B, C and D Identify A, B, C and D

- (A) A = Notochord, B = Nerve cord, C = Gill slits, D = Post-anal part
- (B) A = Nerve cord, B = Notochord, C = Gill slits, D = Post-anal part
- (C) A = Nerve cord, B = notochord, C = Post-anal part, D = Gill slits
- (D) A = Nerve cord, B = Gill slits, C = Notochord, D = Post-anal part
- 102. Which one is a link between chordates and nonchordates?
 - (A) Sphenodon
- (B) Balanoglossus
- (C) Crocodilia
- (D) None

- 103. Hemichordates have
 - (A) Open type of circulatory system
 - (B) Respiration ny gill
 - (C) Proboscis gland/glomerulus as excretory organ
 - (D) All of these
- 104. Which of the following is not found in the phylum chordata?
 - (A) A dorsal hollow nerve chord
 - (B) Lateral paired gill slits during development
 - (C) A notochord at some stage of development
 - (D) An external skeleton
- 105. Which of the following is not a characteristic unique to all members of phylum chordata?
 - (A) A notochord, a dorsal hollow nerve cord (B) A ventral heart
 - (C) An endoskeleton

- (D) Vertebrate
- 106. Which of the following traits is not shared by both the hemichordata and chordata?
 - (A) Notochord

(B) Gills

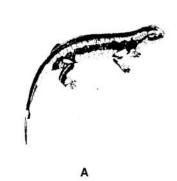
(C) Bilateral symmetry

(D) Coelomate condition

107. Choose the correct option in respect of characteristics to respective group

	Cyclostomes	Chondrichthy	es	Osteichthyes	
	(1) Sucking mouth	Ventral Mouth		Terminal mouth	
	(2) Scale absent	Placoid scale		Cycloid/Ctenoid scale	
	(3) Marine	Marine		Marine	
	(4) 6-15 pairs	5-7 pairs of		4 pairs of gills	
	of gills ope <mark>rculum</mark>	gills without		with operculum	
	(A) 1 and 2 are corre	ct		(B) 1 and 4 are correct	
	(C) All are correct			(D) Only 3 is correct	
108.	Which of the followin	g <mark>characters are</mark>	corre	ct about the Cyclostomata?	
	(A) All living member	e of the class Cv	clocto	omata ara acatanaracitas an sam	

- 1
 - (A) All living members of the class Cyclostomata are ecotoparasites on some fishes
 - (B) Cranium & Vertebral column are cartilaginous
 - (C) No fins
 - (D) All
- 109. Following are few examples of bony fishes. Find out the marine bony fishes
 - (B) Hippocampus (Sea House) (A) Flying fish (C) Both (A) and (B) (D) Labeo (Rohu), Catia, Clarias
- 110. Column I
 - 1. Cartilaginous fishes fertilization p. Usually external 2. Bony fishes q. internal fertilization
 - r. Mostly oviparous s. Many are viviparous
 - t. Direct development


Column II

The correct match between column I and II is

- (A) 1-p r t; 2-p, q (B) 1-q, s; 2-p, r, t (C) 1-r, t; 2-p, q, s (D) 1-p, q, t; 2-r, t
- Which of the following is not a characteristic of class chondrichthyes? 111.
 - (A) Gill slits are separate and without operculum
 - (B) They are predaceous
 - (C) air bladdes is present
 - (D) Notochord is persistent throughout the life

112.

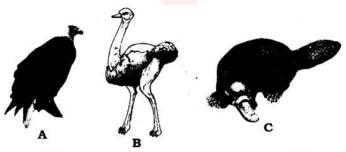
Which of the following options is correct for name of above animals and their respective classes?

- (A) A = Salamandra, Amphibia, B = Chelone, Reptilia; C = Chameleon, Reptilia
- (B) A = Salamandra, Amphibia; B = Chelone, Amphibia; C = Chameleon, Reptilia
- (C) A = Salamendra, Amphibia; B = Chelone, Amphibia; C = Chameleon, Amphibia
- (D) A = Salaman<mark>dra, U</mark>rochordata; B = Chelone, Cephalochrodata; C = chameleon, Hemichordata
- 113. Which of the following traits is not characteristic of amphibians?
 - (A) Moist, scaly, skin
 - (B) Cloaca
 - (C) Dioecous, external fertilization oviparous, indirect development
 - (D) Amniotic egg
- 114. All are cold blooded animals except
 - (A) Fishes, Amphibia, reptiles
- (B) Birds and Animals

(C) Only mammals

(D) Only birds

- 115. Amphibia -
 - 1. Has body divisible into head and trunk. Tail is present in some amphibia
 - 2. Respiration by gills, Lungs and through skin
 - 3. Has scales in all its mambers
 - 4. Can lead dual life (aquatic and terrestrial)
 - 5. Eye lids present
 - (A) All are correct


(B) 1 and 4 are correct

(C) Only 3 is wrong

(D) Only II is wrong

- Reptiles and Aves (Birds) show similarities in all except 116.
 - (A) Dioeciously forms

- (B) Oviparous, internal fertilization
- (C) Creeping / Crewing locomotion
- (D) Direct development
- Which of the following option is correct for name of below animals and their respective 117. classes?

- (A) A = Neophron, Aves, B = struthio, Aves; C = Omithorhynchus, Mammalia
- (B) A = Neophron, Aves, B = Struthio, Mammalia; C = Onithorhynchus, Mammalia
- (C) A = Neophron, Aves, B = Struthio, Aves, C = Ornithorhynchus, Aves
- (D) A = Neophron, Aves, B = Struthio, Reptilia, C = Omithorhynchus, Mammalia
- 118. Choose the false option
 - (A) Most reptilies are terrestrial
 - (B) Reptiles have 3 or 3.5 chambered heart except crocodile (has 4 chambered heart)
 - (C) Snakes and lizards shed their skins as skin cast
 - (D) Reptiles are viviparous
- 119. 1. Body is covered by dry and cornfield skin, epidermal scales or scutes.
 - 2. They have no external ear
 - 3. Crewing/creeping habit
 - 4. 3 chambered heart

The above characters are associated with

	(A) Reptile	(B) Bird	(C) Amphibia
120.	Column I		Column II
	1. Testudo		p. Tortoise
	2. Calotes		q. Garden lizard
	Alligator		r. Wall lizard
	4. Hemidactylus		s. Alligator

The correct matching is

- (A) 1-p, 2-q, 3-r, 4-s
- (C) 1-q, 3-p, 3-r, 4-s

- (B) 1-p, 2-q, 3-s, 4-r

(D) Mammals

(D) 1-s, 2-r, 3-q, 4-p